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Abstract. Oral epithelial dysplasia (OED) often precedes oral cancer. Understanding the underlying 
complex biological aspects of dysplasia associated oral carcinogenesis using important gene sets is 
thus important. Computation assisted gene set identification through different feature ranking and 
visualization techniques was therefore attempted in this study. Result suggested that, weighted 
support vector machine (SVM) could be useful for feature ranking and SVM for attribute selection. 
Alteration in keratinization, cell–cell communication and peptidase activity was the major affected 
phenomena, while extracellular matrix dynamics was also found to be hampered. During best gene 
subset identification, set of six genes could classify normal (NOM) and oral squamous cell carcinoma 
(OSCC) conditions and two sets comprising four genes in each could classify NOM and dysplastic 
(DYS) conditions with 100% sensitivity and specificity. A gene set, comprising 32 genes showed best 
efficacy of 94.12% sensitivity, 99.40% specificity and 98.89% accuracy during classification of DYS 
and OSCC. 

Keywords: OED, oral epithelial dysplasia (OED); SVM, support vector machine; NOM, normal; 
OSCC, oral squamous cell carcinoma; DYS, dysplastic. 

1. Introduction
Oral epithelial dysplasia (OED) is often a step that precedes development of squamous cell

carcinoma. It can either convert to oral squamous cell carcinoma (OSCC) or revert back to normal 
condition, if treated early. Till date there are no specific biomarkers which may be precisely utilized 
to assess malignant potentiality of oral precancers including OED. Histopathological evaluation of 
biopsy specimens still serves as gold standard for critical detection of grades of dysplasia and for 
predicting its malignant potentiality. However, the procedure lacks specificity and suffers from inter 
and/or intra-observer variability because of the paucity of unequivocal features of dysplasia that may 
be regarded as cardinal markers for accurate prediction of progression risks in oral pre-malignant 
disorders A recent review suggested that combination of selected biomarkers may be effective to 
address such problem (Banerjee and Chatterjee, 2015). 

OED is a histopathological condition, where cytological and architectural characteristics of oral 
mucosa are altered. The role of OED in oral carcinogenesis is quite controversial. Some literature 
suggests that likelihood of malignant transformation of OED is significant (Al-Dakkak, 2010), while 
other studies have shown that there is no correlation between malignant potentiality and grade of 
dysplasia (Dost et al., 2014). In such circumstances, understanding the molecular progression of OED 
to OSCC is important and can no longer be avoided (Pitiyage et al., 2009). Semi-quantitative analysis 
of immunohistochemically stained tissue sections has been attempted to grade OED in precancers, 
(Anura et al., 2014) however, the procedures are still immature and have not yet been utilized in 
routine clinical practices. Comparative and quantitative assessments of histological grading and 
immunohistochemical expression of few key molecules to study the association between OED and 
OSCC were reported in few studies (Anura et al., 2014 and Tabor et al., 2003). Molecular dissection 

Satarupa Banerjee, Anji Anura, Jitamanyu Chakrabarty, et al. Biomed. Lab. Clin. Res., 2019, 4(4): 29-35.

29



of oral carcinogenesis has also been attempted through the analysis of proteome and deregulation of 
molecular network (Molinolo et al., 2009), but understanding the progression of OED to OSCC 
remains in its infancy. In silico analysis of microarray gene expression data is recently gaining 
interest for selection of candidate gene which may be subjected to gene ontology (GO) and functional 
enrichment analysis for understanding underlying molecular, biological and cellular activities of 
given gene sets and prioritizing candidate diagnostic indicators (Hindumathi et al., 2014). 

In this study, an in-depth bioinformatic and statistical analyses of the microarray transcriptome 
were attempted to throw light on the process. Differentially expressed (DE) genes were primarily 
selected to dissect progression of OSCC through OED. Weighted support vector machine (SVM) was 
employed to select precise gene subset towards optimal classification of oral lesions, OED and OSCC. 
Venn diagram was implemented in visualization of complex association of different gene sets, to 
unearth their possible functional association (Kestler et al., 2005). The major aim of this 
cost-minimized strategy exercise is to select a novel gene sub-set which can modulate specificity and 
sensitivity of the classification task. 

The main challenge of microarray data analysis includes high number of variables against a small 
sample size, from which meaningful gene sets have to be chosen which should classify the disease 
with maximum efficiency at optimum computational burden and diagnostic cost (Liu et al., 2011). 
Supervised machine learning classifiers such as Naïve Bayes (NB) (Wu et al., 2012) and k nearest 
neighbor (KNN) (Zhang and Deng, 2007) are commonly used for cancer microarray data 
classification in addition to support vector machine (SVM). In this study efficiency of these three 
classifiers were evaluated. Feature ranking and feature selection are routinely used to reduce data 
dimensionality and improve learning and predictive efficiencies. A recent study showed feature 
ranking utilizing weights from linear SVM yields better result even with non-identically distributed 
training and testing data [13]. ReleifF is a feature selection algorithm, which acts through filtering and 
is popularly used in cancer microarray data analysis. It randomly draws instances and after computing 
the nearest neighbors, weighs the feature. It comparatively provides higher weightage to the attribute 
which have higher differentiating ability of the instance from neighbors of other class (Wang and 
Makedon, 2004). Efficacy of feature selection algorithms such as weighted SVM was also evaluated 
in this study during gene selection. Several data visualization techniques are used in cancer 
microarray data towards knowledge discovery and class labeled data analysis [15]. Among them, 
VizRank is a simple gene set ranking technique, which works through utilizing visual projections of 
class labeled data. Here, we employed Radviz (Radial Coordinate visualization)(Novakova and 
Stepankova, 2009 and Mramor et al., 2005) based gene identification with minimal gene numbers 
(three), to reduce computation cost, as well as to identify a subset of molecular criteria showing 
maximum efficacy which may potentially be implemented in routine diagnostics. 

2. Materials and method
GSE30784 dataset was downloaded from Gene Expression Omnibus and used in this study, which

consisted of 167 OSCC, 17 OED and 45 NOM samples. DE genes for each two class conditions were 
obtained using GEO2R (Barrett et al., 2013). The cut-off for gene selection was p value < 0.05 and 
log FC value ± 2. During 3 class disease classification, cut-off value was p value < 0.05 and F score 
more than 100. 

Initially, all DE genes, both upregulated and downregulated gene sets were identified separately 
and then gene ontology (GO) analysis and pathway analysis for each gene set was performed using 
EnrichR (Chen et al., 2013) where common pathways as well as important biological process, cellular 
component and, molecular function were identified. In gene ontology (GO) analysis, when minimum 
of 5 genes were found to be present in any condition, was considered significant. When too many 
processes or functions were obtained, a threshold of combined score was considered and mentioned 
accordingly in the “Result and discussion” section. Pathway analysis was done using KEGG 2015 
pathway. Common pathway and gene ontology analyses were performed with cut-off of combined 
score 25. The concept of combined score in EnrichR is to integrate both p value and z score with the 
formula c = log (p) · z where c is the combined score, represented by p, p-value computed using the 
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Fisher exact test, and z the z-score computed by assessing the deviation from the expected rank. Since 
Enrichr provides all three options for sorting enriched terms, combined score of 25, and p value < 
0.005 were only considered (Chen et al., 2013). Venn diagram was prepared using three different 
gene subsets, as well as six sub-sets of up- and down-regulated genes to identify common and 
exclusive genes in each process using InteractiVenn (Heberle et al., 2015). Utilization of this method 
aided understanding of the complexity of association of both upregulated and downregulated gene 
sets. GO analysis and pathway analysis for each gene set were also again performed using EnrichR 
(Chen et al., 2013). 

During specific gene subset selection for optimal disease classification, efficiency of different 
supervised classifiers namely SVM, KNN and Naïve Bayes was assessed using best features obtained 
through weighted SVM feature ranking method. Efficiency of another feature ranking techniques 
namely ReliefF was compared with weighted SVM and plotted accordingly with the best classifier 
obtained in the previous step, SVM. For selection of best feature subset, manual sequential feature 
reduction was carried out and optimal classification efficiency was evaluated at 10 fold 
cross-validation. The gene set obtained for NOM and OSCC was cross-validated in GSE9844 data set, 
which comprised of 12 NOM and 26 tongue OSCC samples. These analyses were performed in 
Orange 2.7 (Demšar et al., 2004). Visualization based classification by Radviz with minimal gene 
numbers (three) was also performed. Plots have been provided in the supplementary figure. 
Biological functions of the genes obtained in this study have also been mined from Genecard (Safran 
et al., 2010) and presented in supplementary Tables 1, 2 and 3. The schematics of the entire process 
have been provided in Fig. 1. 

3. Result and discussion
This study was performed towards utilization of gene ranking and visualization based precise gene

set selection for comprehensive biological and bioinformatic knowledge fusion. The integrated 
approach of analysis was performed for cost minimization of specific gene signature selection from 
genomics information, which can be further validated by molecular pathology techniques or other 
relevant datasets. 

For GO and pathway analysis, when DE genes were extracted, the result suggested that out of 
54,675 genes, 829 genes were initially expressed in this study. The common pathway analysis 
suggested that cell communication was found to be affected in all conditions; while extra-cellular 
matrix (ECM) receptor interaction was commonly hampered in both NOM to OED and OSCC 
transition. The role of alteration of cell–cell adhesion and other intercellular communications, both in 
junction based and non-junctional modes, especially during epithelial mesenchymal transition during 
carcinogenesis is an established phenomenon, and thus was supported by the results (Kandouz, 2015 
and Loewenstein and Kanno, 1966). Cytokine–cytokine receptor was also found to be affected in 
both NOM and OED to OSCC transition. A recent study validated the findings, since it confirmed 
that early cytokine–cytokine receptor induction is triggering factor of oral carcinogenesis (Liu et al., 
2012). It is also evident from existing literature that deregulation in cell proliferation and cellular 
invasion, which hampered cellular differentiation, is associated with ECM dynamics which is found 
to be affected in fibrosis and cancer (Lu et al., 2011 and Sainio and Järveläinen, 2014). During 
biological activity analysis epidermis development (GO: 0008544) was found to be hampered in both 
NOM-DYS and DYS-CA process, while inflammatory response (GO: 0006954), taxis (GO: 0042330) 
and chemotaxis (GO: 0006935) were commonly hampered in NOM-CA and DYS-CA conditions. 
Eight GO terms extracellular matrix organization (GO: 0030198), extracellular structure organization 
(GO: 0043062), collagen metabolic process (GO: 0032963), multicellular organismal macromolecule 
metabolic process (GO: 0044259), multicellular organismal metabolic process (GO: 0044236), 
collagen catabolic process (GO: 0,030,574), multicellular organismal catabolic process (GO: 
0044243) and extracellular matrix disassembly (GO: 0022617) was found to be altered in all 
processes. Recent studies suggested that intracellular collagen degradation is also associated with 
ECM turnover during malignancy due to altered μPARAP/Endo180 expression in mammary gland 
(Curino et al., 2005), which might be also the case here. A recent study also showed expression of 
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inflammation and ECM components in oral carcinogenesis and validated the notion obtained in this 
study (Tanis et al., 2014). The important affected biological process in OED associated oral 
carcinogenesis has been shown in Table 1, while Table 2 presented important affected cellular 
components in OED associated oral carcinogenesis obtained from GO analysis using of DE genes. 
Fig. 1 showed Venn diagram showing association of DE genes obtained in each two class conditions, 
NOM-OSCC, NOM-DYS and DYS-OSCC. 

When common 28 cells common in all genes were subjected to GO analysis, it was found that in 
epithelial cell differentiation (GO: 0030855), epidermis development (GO: 0008544) and epithelium 
development (GO: 0060429), more or equal to 5 genes were involved. Extracellular matrix 
components were also involved and were in synergy with previous results (Banerjee and Chatterjee, 
2015). Peptidase regulator activity (GO: 0061134), endopeptidase activity (GO: 0004175) and 
calcium ion binding (GO: 0005509) were the affected molecular function. Previously other network 
based studies showed activity of calcium binding proteins in oral carcinogenesis too (Nomura et al., 
2007). 

In all conditions, ECM related areas (extracellular region (GO: 0005576), extracellular space (GO: 
0005615), extracellular vesicular exosome (GO: 0070062), extracellular matrix (GO: 0031012) and 
proteinaceous extracellular matrix (GO: 0005578)) were found to be affected. During NOM to OSCC 
transition, basement membrane (GO: 0005604) was also found to be involved. This concept supports 
a well-established fact that malignant potentiality is correlated with enzymatic degradation of 
basement membrane collagen (Liotta et al., 1980). Interestingly collagen related components were 
found to be affected in both NOM to DYS and OSCC transition, but not during DYS to OSCC 
conversion. It can be hence implied that collagen related alterations are prominent in early stages of 
carcinogenesis, while ECM related alterations are evident in all stages of. This result supports the 
preconceived result that in severe dysplasia and OSCC ECM is disintegrated, while collagen III and 
laminin play role in neo-angiogenesis in lung cancer (Fisseler-Eckhoff et al., 1990). The same 
mechanism is also likely to happen in oral carcinogenesis. 

When the gene sets were segregated using Venn diagram with union by list specification and both 
upregulated and downregulated genes were utilized (depicted in Fig. 2 and Fig. 3), total 16 classes 
were identified and provided in Supplementary Table 4. For understanding the process of OED, role 
of the exclusive genes when evaluated, the gene ontology with combined score more than 5, it was 
found that negative regulation of proteolysis (GO: 0045861), negative regulation of protein 
processing (GO: 0010955), negative regulation of protein maturation (GO: 1903318), negative 
regulation of endopeptidase activity (GO: 0010951), negative regulation of peptidase activity (GO: 
0010466), regulation of endopeptidase activity (GO: 0052548) and regulation of peptidase activity 
(GO: 0052547) was found to be hampered when biological activity was evaluated. Mostly 
endopeptidase activity is assaulted (Serine-type endopeptidase inhibitor activity (GO: 0004867) 
peptidase regulator activity (GO: 0061134), endopeptidase inhibitor activity (GO: 0004866), 
peptidase inhibitor activity (GO: 0030414), endopeptidase regulator activity (GO: 0061135) and 
enzyme inhibitor activity (GO: 0004857)) during molecular function assessment. In this regard a 
recent study suggested that expression of ADAMTS2 is important in craniofacial fibrous dysplasia 
(Zhou et al., 2014), while another study showed that ADAMTS2 is associated to regulation of 
procollagen amino-propeptide processing and affect collagen biosynthesis (Le Goff et al., 2006). 
Hence this information is in synergy with our result. 

From the affected genes involved in NOM-DYS-UP and DYS-CA-UP, it was found that 
keratinization (GO: 0031424) was the most involved biological process, and mainly cell 
communication is affected in KEGG pathway. A recent study also revealed such associated alteration 
in oral carcinogenesis (Kandouz, 2015 and Banerjee et al., 2015). 

Result shown in Fig. 4 depicted that NOM and DYS as well as NOM and OSCC can be clearly 
differentiated on the basis of principle components, but there were significant overlapping in DYS 
and OSCC conditions. Again in clinical theranostics, single genes would have better implication than 
principal components. So further single gene based analysis was initiated, but it could be understood 
that complete diagnostic segregation of DYS and OSCC is quite difficult. 
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When performances of the classifiers were tested, SVM showed maximum efficacy and thus was 
chosen for further analysis (Fig. 5a). When the role of two feature ranking method, ReliefF and 
weighted SVM were evaluated, weighted SVM showed better potential and thus was used for feature 
selection (Fig. 5b). Gene selection result showed that when NOM and OSCC were classified, best 23 
features according to weighted SVM method could classify with 100% sensitivity and specificity. 
Further manual sequential feature reduction aided selection of six genes, which also showed similar 
efficacy and thus helped towards computational cost reduction. The gene sets with their 
corresponding weighted values in first bracket are PEG3 (0.037), UPK1A (0.018), LAMB1 (0.010), 
GREM1 (0.008), TYRP1 (0.007) and COMP (0.007). When the efficacy of the same gene set was 
validated using a different dataset, GSE9844 sensitivity was found to be 66.67%, specificity 88.46% 
and 81.67% accuracy, but further manual sequential feature reduction and elimination of LAMB1 and 
UPK1A resulted in significant betterment of the classification efficacy (sensitivity 91.67%, 
specificity 92.31% and accuracy 92.50%). The differences in the results are might be site specific 
variation in gene expression, since in that study only tongue cancers were considered (Ye et al., 2008). 
When Radviz score based projection with maximum three genes were performed, five gene sets were 
found to have score more than 99. The gene sets in the third bracket with their scores in the first 
bracket were [PEG3, MYBPC1, COL1A1] (99.26), [LOC100506098, MYBPC1, COL1A1] (99.19), 
[COL3A1, CHRDL1, PEG3] (99.14), [COL3A1, UPK1A, PEG3] (99.02), [LPIN1, COL1A1, PEG3] 
(99.00). Both results are far better than previous results, where PCA based weightage linked gene 
selection was performed in the same dataset to classify NOM and OSCC, while the best classification 
was found for gene set [MMP1, RUNX2, MTERFD2] with 98.80% sensitivity and 95.60% 
specificity (Kim et al., 2014). 

During NOM and DYS classification, best 20 features could classify the conditions with 100% 
sensitivity and specificity too. Sequential feature reduction showed that two sets of 4 genes in each 
also provide the same results. The first gene set comprised of PRR9 (0.002), LMO7 (0.001), CAPN14 
(0.001) and LOC344887 (0.001) while KRT10 (0.002), CRYM (0.002), LMO7 (0.001) and 
ATP6V0A4 (0.001) were present in the second list. Interestingly during Radviz scoring based 
classification with maximum three genes that were performed, ten gene sets were obtained with score 
of 100 and CDSN was common in all sets. The gene sets shown in the third brackets are [CDSN, 
CRYM, HYAL1], [CDSN, SLC8A1-AS1, ANKRD20A5P], [CDSN, F2RL2, FAM3D], [CDSN, 
PRR9, CAPN14], [CDSN, COL3A1, CEACAM1], [CDSN, FAM3D, LRRC15], [CDSN, FAM3D, 
HYAL1], [CDSN, FAM3D, ANKRD20A5P], [CDSN, ANKRD20A5P, CAPN14] and [CDSN, 
COL3A1, FAM3D]. CDSN, gene associated with epidermal barrier integrity was found to be most 
interesting in this set, which was also found to be present in all sets. 

Diagnostic classification of DYS and OSCC using the gene expression was found to shown 
comparatively lesser efficiency than other two classes and more computation cost had to be exploited, 
since the number of genes in the subset was quite high. It was found that, the best 45 genes in 
weighted SVM could classify the lesions with 88.24% sensitivity, 99.40% specificity and 98.33% 
accuracy. Then a gene set of 32 genes was obtained which showed better efficacy by manual 
sequential feature selection (94.12% sensitivity, 99.40% specificity and 98.89% accuracy). Further 
feature reduction was also tried, but since specificity was found to be reduced nearly up to 1% 
(98.20%) and sensitivity of nearly 6% (88.24%) with 22 selected genes, in spite of the large number 
of genes, the former gene set was considered to be optimal. Although in previous studies the number 
of genes in the gene set was lesser, the sensitivity and specificity are higher in this study (Kim et al., 
2014 and Chen et al., 2008). The result has been shown in Table 3. When the efficacy of Further then 
Radviz projection based classification was performed with maximum three number of genes, the gene 
set comprising BPIFC, PLEK2 and TNFAIP3 was found to be the only gene saving score greater than 
94 (94.29). 

Finally when three classes were tried to be segregated using linear SVM the result suggested that 
the best ranked 23 genes of weighted SVM feature ranking method could classify NOM, DYS and 
OSCC with 82.35% sensitivity and 99.53% sensitivity 96.53% accuracy. When manual sequential 
feature reduction was performed, it was found that a gene set containing 13, could classify the 
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conditions with 82.35% sensitivity and 100% specificity. The gene set with their corresponding 
weighted value in first bracket are LOX (0.823), 2NF519 (0.531), MTERF4 (0.498), F2RL2 (0.444), 
CLEC3B (0.418), AADAC (0.359), HSBP1 (0.345), NDNF (0.313), MMP1 (0.285), CRISP3 (0.269), 
ENAH (0.258), ATP2C1 (0.229) and PAQR8 (0.192). From the selected 4 gene sets, FAM3D were 
found to be common in NOM-OSCC and DYS-OSCC classes, COL3A1 were common in 
NOM-OSCC and NOM-DYS condition, which was found to be associated with cytokine activity and 
in collagen III expression respectively. Previously 5 gene sub-sets were identified in colorectal cancer 
stage specific classification (Berdiel-Acer et al., 2014), while this study is one of the detailed 
endeavor to identify gene sub-sets in oral cancer and their biological pathway and GO analysis. 

4. Conclusion
It can be concluded that, knowledge discovery through integration of state-of-the-art data mining

followed by meaningful biological interpretation of the result has been implemented in this study for 
understanding OED associated carcinogenesis. Utilization of both feature ranking and visualization 
technique aided identification of precise gene sets with minimum number of genes for optimal 
classification of two or three different conditions. Gene set selection was also performed towards 
minimization of arbitrary selection of gene sets in this respect. In turn, the selected gene sets in this 
study are expected to be used in routine clinical practice towards cost minimization of molecular 
pathology based oral lesion diagnostics.. 
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